1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y) 1.15. D: x = 0, y2 = 1 – x, μ = 2 – x – y 2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты. 2.15. D: x2 + y2 + 2ay = 0, x2 + y2 + ay = 0, x ≥ 0, Ox 3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. 3.15. V: y2 + z2 = 8x, x = 2 4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1. 4.15. V: y2 = x2 + z2, x2 + z2 = 4, y = 0, Oy
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул) Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате