1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y) 1.19. D: y = 0, y = 2x, x + y = 6, μ = x2 2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты. 2.19. D: x2 + y2 – 2ax = 0, x2 + y2 – ax = 0, y ≤ 0, Ox 3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. 3.19. V: x2 + z2 = 4y, y = 9 4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1. 4.19. V: x2 = y2 + z2, y2 + z2 = 4, x = 0, Ox
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул) Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате