1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y) 1.25. D: x = 0, y = 0, y = 4, x = √25 − y2, μ = x 2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты. 2.25. D: x2 + y2 + 2ax = 0, x + y ≤ 0, y ≥ 0, Oy 3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. 3.25. V: x = y2 + z2, y2 + z2 = 9, x = 0 4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1. 4.25. V: z = 9 – x2 – y2, z = 0, Oz
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул) Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате