1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y) 1.27. D: y = x, y = x2, μ = 2x + 3y 2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты. 2.27. D: x2 + y2 – 2ax = 0, y – x ≤ 0, x + y ≥ 0, Oy 3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. 3.27. V: z = 2√x2 + y2, x2 + y2 = 9, z = 0 4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1. 4.27. V: z = 3(x2 + y2), z = 3, Oz
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул) Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате